
2013 NDIA GROUND VEHICLE SYSTEMS ENGINEERING and TECHNOLOGY 
SYMPOSIUM 

Vehicle Electronics and Architecture (VEA) Mini-Symposium 
August 21-22, 2013 – Troy, Michigan 

 
 

SIMPLIFIED MIDDLEWARE TO INCREASE GROUND TACTICAL VEHICLE 
SYSTEM AVAILABILITY 

 
Tri Nguyen 

Software Architect 
Northrop Grumman Corporation 

Carson, CA 

ABSTRACT 

Northrop Grumman has developed Tactical Ground Vehicle High-Availability (HA) middleware 

conforming to open standards specified by the Service Availability Forum (SAF), a consortium of industry-

leading communications and computing companies. The software hot-spare and standby capabilities realized by 

this technology operate across tightly and loosely coupled farms of processors, ensuring critical processes 

remain operational with zero or minimal interruption, as chosen by system architects. 

High availability software delivers key benefits to the warfighter. Systems experience less downtime, 

helping to maintain continuity of tactical operations. Both hardware and software failures are managed, 

reducing the impact on system aborts and essential function failures and therefore reducing the number of 

computing elements required to meet system level availability SWAP-CC (Size, Weight, Power, and Cost, 

Cooling). The wrappers Northrop Grumman has created for open source and commercial implementations of the 

SAF middleware are specifically designed for use in tactical ground vehicles, both minimizing the impact on 

software development and also creating the possibility of integrating COTS software without modification of the 

COTS distribution. We shield application developers from most HA domain specific details such as startup, 

shutdown, failover and recovery policies, and so minimize HA training and impact to cost and schedule. 

Benchmark tests also show that the addition of HA services does not significantly increase system resources 

overhead even when the system is stressed in high message traffic scenarios. 

 

INTRODUCTION 

Tactical Ground Vehicles  (TGVs) with advanced 

offensive and defensive capabilities enabled  by high 

performance computers and digital networks can change the 

outcomes for our warfighters on the battlefield. Powered by 

software running on redundant clusters of processors and 

managed by middleware that maintains hot standby or fast 

restart of essential processes, these vehicles can continue to 

provide the processing needed to support 

telecommunications, situational awareness, and command 

control applications in the face of failures or combat 

damage. This paper describes how Northrop Grumman 

implemented the low cost technology we use to realize those 

benefits.  

High availability automation built using this approach 

directly benefits warfighters. Functions including indirect 

vision driving, local situation awareness, communications, 

command and control, mission planning, target recognition, 

and fire control are all dependent on sophisticated software 

running on high performance computers, with only a 

severely degraded capability possible through reversion to 

manual backups.  

We define resilient computing systems as composites of 

hardware and software able to leverage the remaining 

computing resources to maintain ongoing functions and 



 

Page 2 of 6 

missions in the event of damage or failures in hardware or 

software. Such systems permit crews to conduct combat and 

peacetime operations with very high availability of mission 

essential computing functions and low probability of system 

abort due to those computing functions.   

AVAILABILITY 

High availability is an attribute of systems that operate 

without interruption for long periods of time.  Availability 

measures the uptime of a system, and is typically expressed 

as a percentage. A computer system with availability of 

99.999% (commonly termed “five nines”) is highly 

available, delivering service 99.999% of the time it is 

required.  Error! Reference source not found. shows the 

total time a system may be unavailable in an entire calendar 

year and still meet availability of 90 percent and above. By 

the time availability requirements get into the 99 percent and 

above range, either very high reliability or automated 

mechanisms to restore lost functionality are required. In 

systems where such availability is required but damage is a 

factor, very high reliability is insufficient – a combination of 

redundant hardware and automated software process 

restoration mechanisms is the only way to maintain that 

level of availability. 

Availability

90.0000% 37 days

99.0000% 3.7 days

99.9000% 9 hours

99.9900% 53 minutes

99.9990% 5 minutes

99.9999% 32 seconds

Downtime per 

Year

 
Table 1. Availability vs. Downtime 

Suppose a system has been implemented as a composite of 

1000 hardware and software components where all of those 

components must be operational for the system to function. 

If each component has 99.999 percent availability, the 

overall system will have 3.7 days down time per year, 

delivering availability of only 99 percent.   

SYSTEM ARCHITECTURE 

The key characteristic of a highly available (HA) computer 

system is its ability to provide uninterrupted service to its 

users in the event of hardware or software failure.   No one 

approach achieves high service availability at reasonable 

cost; instead, practical HA systems implement a strategy of 

quickly replacing unavailable services using a uniform 

hardware infrastructure underneath recoverable software and 

data elements. Implementing that strategy typically 

combines these four mechanisms: 

 Hardware, software, and data redundancy 

 Automated recovery from failures when possible 

 Minimized time to restore service 

 Fault prediction and avoidance 

Redundancy 

An HA system must maintain two forms of redundancy. 

Spare hardware is required to ensure capacity remains 

available after failures, while redundant copies of software 

and (in some cases) data are required to ensure the 

information necessary to restart software and reload current 

state is available.  

Until such time as literally self-healing hardware becomes 

available and practical, maintaining the level of hardware 

infrastructure necessary to support mandatory services in the 

face of damage and failure requires redundant hardware and 

the ability to migrate processing among hardware elements, 

routing around and avoiding failed ones. The degree to 

which architects must provision redundant servers, storage, 

networking, power supplies, and other components depends 

not only on the target availability, but also on the 

components’ inherent reliability, vulnerability to damage, 

interconnection architecture, substitutability, repairability, 

and related factors. Uniformity of individual component 

characteristics and of the interconnections among them 

improves the substitutability of components, reducing the 

total online sparing required. Cost and volume may further 

be reduced if the requirement for spare hardware can be 

coalesced with that for hardware design margin.  

Data Redundancy 

Beyond what’s required to provide spare processing and 

random access memory, hardware must be provisioned such 

that current copies of software and data are preserved over 

failures. Separating software images into a read-only 

partition, isolated from volatile data, can minimize the 

amount of read/write storage and traffic into and out of the 

supporting devices. Standard COTS (Commercial Off The 

Shelf) information technology practices including mirrored 

file systems, backup copies, or RAID (Redundant Array of 

Independent Disks) technology using data replication or 

distribution with parity over multiple disks address the 

software infrastructure requirements for data redundancy.  



 

Page 3 of 6 

Software Redundancy 

We provide service continuity by maintaining process 

execution in spite of failures of individual systems or 

components, and in spite of fault recovery, maintenance or 

system management actions. Process execution disruptions, 

regardless of cause, are dealt with automatically.  The 

decision of what hardware resources support software 

continuation is made in a controlled manner using dynamic 

resource allocation. 

We assume that data redundancy ensures information 

maintained in persistent storage is accessible to restarted 

processes. Because processes also maintain variable sin 

memory, software redundancy requires the state of the 

process – resources and data – be preserved and restored. 

There is a tradeoff between the currency of the restored state 

and the resourced dedicated to maintaining the state backup 

information; better currency requires more resources. For 

that reason, we provide a variety of software restart 

mechanisms for use depending on the needs of the individual 

process: 

 Concurrent redundancy maintains a hot standby copy of 

the process instance. Any current service transaction 

continues uninterrupted after a fault of the live process 

once the fault is discovered.  

 Serial redundancy is achieved by restarting the failed 

process as a duplicate instance, terminating the failed 

instance if necessary. The new service is available after 

the fault is detected and the duplicate process initialized. 

Service may be interrupted for a short period of time 

during initialization.  

Concurrent redundancy imposes n overhead in terms of 

processor resource. It occupies more space, generates more 

heat, and consumes more power than is required for a non 

redundant system. 

Serial redundancy is less costly in terms of size, weight, 

power, and cost, and with the exception of added latency 

before service is restored achieves a similar HA result as the 

concurrent approach.  

IMPLEMENTATION 

The Northrop Grumman High Availability Middleware is a 

set of C++ classes and libraries that simplify the work 

involved in implementing software that realize the 

concurrent and serial redundancy models. Experiments on 

the middleware by Northrop Grumman validated that the 

HA capabilities needed in TGVs can be implemented as a 

simplification of the far more comprehensive capabilities 

defined by the open Service Availability Forum (SAF) 

specification suite. Accordingly, we defined and wrote a 

middleware wrapper around an implementation of that 

specification that exposes only the functionality needed in 

the TGV application. This overall implementation approach 

– combining a TGV wrapper with proven, high-TRL COTS 

HA middleware – has several concrete benefits: 

 Hiding unneeded SAF complexity reduces the cost and 

schedule for implementing HA in ground tactical 

vehicle applications, and increases the reliability of 

those implementations 

 Wrapping the SAF implementation allows a choice of 

COTS implementation, because the fine details 

differentiating the open source implementation from a 

commercial one can be hidden by the wrapper 

 Implementing the wrapper at the software middleware 

layer isolates application processes from underlying 

infrastructure. That isolation, in combination with a 

hardware computing platform that clusters multiple 

identical general purpose processors lets the C4ISR 

(Command, Control, Communications, Computers, 

Intelligence, Surveillance and Reconnaissance) system 

avoid additional cost for HA-specific hardware 

 The software-only HA solution permits design and 

integration-time tradeoffs between concurrent and serial 

redundancy, letting system designers optimize for 

SWAP far later in the design process than is possible 

with a hardware layer solution 

What the SAF specification does not address, however, is 

the necessary data resilience capability. Rather than 

implement a proprietary solution, Northrop Grumman chose 

to integrate the open Data Distribution Service (DDS) 

defined by the Object Management Group. DDS defines a 

publish-subscribe data interchange capability with multiple 

ways to specify quality of service, including the ability to 

persist data independent of the publisher. The choice of a 

publish-subscribe data architecture both decouples software 

processes in general, simplifying system integration, and 

also provides a strong foundation for application integration. 

Northrop Grumman believes cross-application data 

integration via publish-subscribe methods would improve 

VICTORY (Vehicle Integration for C4ISR/EW 

Interoperability) significantly.  



 

Page 4 of 6 

SERVICE AVAILABILITY FORUM (SA FORUM) 

From its own description, “The Service Availability 

Forum™ (SA Forum) is a consortium of industry-leading 

communications and computing companies working together 

to develop and publish high availability and related 

management software interface specifications” [1].  SA 

Forum has published both an Application Interface 

Specification (AIS) and a Hardware Platform Interface 

(HPI). The AIS is what we exploit for the TGV application; 

the HPI provides hardware discovery, monitoring, and 

management capabilities not presently needed for TGV – 

particularly in light of VICTORY – and so is not further 

addressed here.  

The AIS defines an abstraction layer between the 

application and the service availability middleware. 

Implementations of the AIS provide the HA framework used 

to support highly available applications. Figure 1 shows how 

the pieces fit together – a Northrop Grumman wrapper 

envelops the implementation of the AIS, providing a limited 

and specialized interface to TGV software subcomponents 

through a high availability process base class, and mediating 

the interactions of the AIS implementation with the platform 

via the Northrop Grumman TGV HA middleware itself.  

 
Figure 1.  HA Architecture Tailored for Tactical 

Ground Vehicle 

Detailed definitions of the non-TGV elements of Figure 1 

can be found in the AIS; the portal to the specification is at 

[2].  

DEVELOPMENT 

Software development in the context of the TGV HA 

middleware has two parts. First, the overall system 

configuration is defined – once – for the processes and 

processors managed by the HA middleware. Each managed 

process then is written incorporating calls into the simplified 

API (application programming interface) of the TGV HA 

middleware process base class.  

HA configuration defines the context in which HA 

processes run. Developers invoke the HA middleware to do 

the following: 

 Identify the hardware environment, which consists of 

processing entities such as blades, nodes, and/or 

clusters. Asymmetric combinations are allowed 

 Identify the logical software processes and services  

(Service Units and Service Groups in SAF terminology) 

within the hardware environment 

 Identify the strategy used to recover processes and 

services after node failures. Unique strategies can be 

employed for each process and service 

Configuration options typical for multiprocessor 

environments are visible through the TGV HA middleware, 

including the ability to bind processes and services to one or 

more unique hardware elements, to define where processes 

and services start under normal or other conditions, and to 

define which processes and services are inessential in a 

constrained environment. Resource allocation is dynamic, 

and accounts for actual resource availability.  

Northrop Grumman chose to hide the SA Forum HA 

middleware API from TGV applications by creating an 

abstract HA base class that handles the details of the 

necessary interactions with the SA Forum HA middleware. 

Each TGV process type required for the applications 

becomes a class derived from the base type, inheriting its 

methods and adding new ones as appropriate. Initialization 

within processes involves little more than registering a few 

callback functions, as illustrated in this example: 



 

Page 5 of 6 

// Register Callback to HA state change 

m_HaState = HA_INITIAL;  

c_HaManager *HM = c_HaManager::CreateInstance(); 

HM->RegisterHaCallback(c_CopAgent::_HaStateChangeCB);  

 

// Register Callback for Event Pub/Sub 

c_EventManager *EM = c_EventManager::CreateInstance(); 

EM->RegisterEventCallback(c_CopAgent::_EventSubCB); 

The states presented through the state change callback are 

those defined by SA Forum, maintaining consistency with 

their middleware implementation. The publish-subscribe 

events are new entities created by Northrop Grumman to 

facilitate the integration of DDS with HA.  

Checkpoints are the SA Forum mechanism to control the 

transfer of state information from a previously live process 

or service instance to the recovered instance. We use the 

standard, unmodified SA Forum API to access checkpoints; 

the DDS publish-subscribe mechanisms integrated with 

checkpoints in a simple, direct manner.  

PERFORMANCE 

OpenClovis Solutions, which provides software and 

support based on the SAFplus open source code base, has 

measured the performance impacts of the SA Forum 

standards using a variety of hardware configurations. The 

following performance data are summarized from their 

report. The measurements date from 2007, however, so in 

this paper we’ve attempted to correlate the hardware tested 

to what it might correspond to today (mid-2013). 

 Low-end: The tested 4 node cluster of Pentium 4 and 

Celeron processors running several versions of Linux at 

speeds from 1.3 to 2.53 GHz might correlate with a 

federation of embedded controllers. Times to fail over 

an application where a hot standby was running, 

including time to detect the failure, ranged from 27 to 

112 milliseconds depending on processor loading.  

 High-end: The tested 10 node cluster of quad-core Xeon 

processors at 2 GHz corresponds loosely to a cluster of 

Sandy Bridge i7 quad-core single board computers. The 

test looked at failover of an application from one node 

to another, so it can be argued that the size of the cluster 

wasn’t highly relevant to this test. Failover times, 

including time to detect the failure, ranged from 21 to 

118 ms depending on processor loading.  

Independent of any attempt to rationalize the similarity in 

the two sets of measurements, the times to detect failure and 

recover functionality are well within the timeframe for 

which interactive processes would appear to have been 

continuously available. Real time processes with hard timing 

constraints would require more careful analysis, engineering, 

and provisioning.  

APPLICATION AND SERVICE RESILIENCE – 
VICTORY 

IBM classifies application resilience into five categories 

[3].  

1. No application recovery 

2. Automatic application restart and manual repositioning 

within applications 

3. Automatic application restart and semi-automatic 

recovery 

4. Automatic application restart and automatic recovery to 

last transaction boundary  

5. Full application resilience with automatic restart and 

transparent failover  

The Northrop Grumman HA middleware provides 

simplified integration of highly available processing support 

at levels four and five of the IBM categorization. Taken in 

concert with our integration of DDS support to improve the 

ability of systems integrators to tie disparate applications 

together on the same computing and display platform, this 

technology operating at the highest levels of the IBM 

taxonomy could enhance the value of the emerging U.S. 

Army VICTORY standard. Because so many of the services 

standardized by VICTORY may be mission critical (e.g., 

Time Sync, Position, Orientation, Direction, Audio/Video, 

C4, EW services), integration of HA technology at low cost 

and low complexity into the VICTORY standard would  

greatly benefit future warfighters.  

CONCLUSION 

High availability, resilient applications and services can be 

achieved simply and at low added cost using open standards 

when implemented by highly mature COTS specifications 

and software. Integration of that technology, the open DDS 

standard, and VICTORY could be the answer to the 

common operating environment that for so long has been the 

Holy Grail of vehicle integration, while at the same time 

improving C4ISR system availability and lowering system 

integration costs.  

REFERENCES 

[1] Service Availability Forum, “The Service Availability 

Forum and Open Specification Solutions”, February 

2009 



 

Page 6 of 6 

(http://www.saforum.org/HOA/assn16627/images/The_S

ervice_Availability_Solution_FINAL_Whitepaper.pdf)  

[2] Service Availability Forum, “Application Interface 

Specification”, 

http://www.associationvoice.com/Service-Availability-

Forum:-Application-Interface-

Specification~217404~16627.htm  

[3] IBM, IBM i 7.1 Information Center, Availability, High 

availability, High availability overview, Components of 

high availability, Application resilience, 

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.j

sp?topic=%2Frzarj%2Frzarjcompappres.htm  

http://www.saforum.org/HOA/assn16627/images/The_Service_Availability_Solution_FINAL_Whitepaper.pdf
http://www.saforum.org/HOA/assn16627/images/The_Service_Availability_Solution_FINAL_Whitepaper.pdf
http://www.associationvoice.com/Service-Availability-Forum:-Application-Interface-Specification~217404~16627.htm
http://www.associationvoice.com/Service-Availability-Forum:-Application-Interface-Specification~217404~16627.htm
http://www.associationvoice.com/Service-Availability-Forum:-Application-Interface-Specification~217404~16627.htm
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzarj%2Frzarjcompappres.htm
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzarj%2Frzarjcompappres.htm

